Non-compact group shifts over countable group alphabets
Marcelo Sobottka  1@  
1 : Departamento de Matemática - UFSC

Let $(G,\cdot)$ be a countable group. Consider the group $(G^\mathbb{Z},*)$ where $*$ is the piecewise operation defined from operation $\cdot$ on $G$. Given $F\subset \bigcup_{n\geq 1} G^n$, define $$X_F:=\{(g_i)_{i\in\mathbb{Z}}:\ (g_i)_{m\leq i\leq n}\notin F,\ \forall m,n\in\mathbb{Z}\}.$$

We will characterize when $X_F$ is a subgroup of $G^\mathbb{Z}$.


Online user: 1