Irregular and Semi-regular Tilings of the Hyperbolic Plane

Eduardo Silva ${ }^{* 1}$ and Marcelo Firer ${ }^{\dagger}{ }^{2}$
${ }^{1}$ Universidade Estadual de Maringá (UEM) - Av. Colombo, 5790, Brazil
${ }^{2}$ Instituto de Matemática, Estatística e Computação Científica [Brésil] (IMECC) - Rua Sérgio Buarque de Holanda 651 - Cidade Universitária "Zeferino Vaz Distr. Barão Geraldo - Campinas - São Paulo, Brazil

Abstract

In a very roughly way, Hyperbolic Geometry is a non-Euclidean geometry which deny the fifth Euclidean postulate, assuming that, from a point not belonging to a line, there are two lines through the point, which are parallels to the given line. One of the main property of Hyperbolic Geometry is that there exists a tiling (tessellation) of the hyperbolic plane by a regular polygon with $\$ \mathrm{p} \$$ sides and with $\$ \mathrm{q} \$$ other $\$ \mathrm{p} \$$-gons meeting in each vertex if, and only if, $\$(\mathrm{p}-2)(\mathrm{q}-2)>4 \$$. Tilings of the hyperbolic plane using non-regular polygons or more than one type of regular polygons are more complexes. In this work we consider the following constructions: i) tilings of the hyperbolic plane by copies of a semi-regular polygon with alternating angles. We study the behavior of the growth of the polygons, edges and vertices when the distance increase from a fixed initial polygon. ii) semi-regular tilings of the hyperbolic plane, where two or more distinct regular polygons are used to tile the plane.

[^0]
[^0]: *Speaker
 ${ }^{\dagger}$ Corresponding author: mfirer@gmail.com

